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Abstract. The phonon modes of a quantum well wire, formed by a cylindrical polar
semiconductor 1 (well material) (ρ < R1) embedded in another polar semiconductor 2 (barrier
material) (R1 � ρ < R2), were studied by using the dielectric continuum model. The confined
longitudinal optical phonon modes both in the wire (LO1) and in the barrier materials (LO2) and
the interface optical (IO) phonon modes as well as the corresponding electron–phonon interaction
Hamiltonians are derived. With a two-parameter variational trial wave function, the bound-polaron
binding energy has been calculated numerically for different confining potential heights and wire
radii. The result shows that the electron–phonon interaction can greatly modify the impurity binding
energy. The IO modes are the main factor contributing to the modification. The influence of the
LO1 modes increases as the wire radius increases and reaches the bulk limit at large wire radius,
while the LO2 modes only show their influence at narrow wire radius.

1. Introduction

The progress in semiconductor nanotechnology has made it possible to fabricate various kinds
of semiconductor heterostructure including many kinds of low-dimensional structure. The
quantum well wire (QWW) system is one of the fields of great interest. Both experimental
[1–3] and theoretical [4–6] studies on the electronic structure, transport properties, exciton and
impurity levels and binding energies in QWW have been widely reported.

The properties of impurities have always been of great interest to researchers, since
Bastard’s pioneering work on the donor impurity in a semiconductor quantum well [6]. Many
authors have extended their research to impurities in low-dimensional structures [7,8]. Brown
and Spector [9] studied the hydrogen-like impurities in a QWW, considering both the infinite-
and finite-confinement situations. Since it is impossible to obtain a formula solution to the
Schrödinger equation for an impurity in a low-dimensional system, approximation methods
have to be used; among these, the variational approach is the one most widely used. In our
recent publication [10], we developed a two-parameter trial wave function especially tailored
for the QWW structures. Calculation shows that it can obtain a better result than that given by
Brown and Spector [9].

It is well known that the electron–optical phonon interaction is an important factor
influencing the physical properties of polar crystals. The effect of such an influence
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becomes stronger as the dimensionality of the system reduces [11]. Research on the polaron
properties of a cylindrical quantum wire indicates the dependence of the polaron effect on
the dimensionality of the structure [12]. Therefore, it is essential to consider the polaron
effect when studying the impurity properties in low-dimensional structures [10, 13–15].
However, before we study the bound polaron in a QWW system, we have to work out
the appropriate phonon modes and electron–phonon interaction Hamiltonians for the QWW
system.

A number of authors have made great contributions in studying the phonon modes and
the electron–phonon interaction in low-dimensional semiconductor structures [16–23]. The
electron–phonon interaction in a dielectric confined system was first studied by Lucas et al [16]
and Licari and Evrard [17] within the dielectric continuum model. Wendler [18] developed
the framework of the theory of optical phonons and electron–phonon interaction for the
spatially confined systems. Constantinou and Ridley [19] worked out the phonon modes
in a GaAs/AlxGa1−xAs quantum well wire. Wang and Lei [20] derived the confined phonon
modes and surface phonon modes in a free-standing cylindrical quantum wire and studied
their interaction with electron carriers. Li and Chen [21] derived the phonon modes and
the electron–phonon interaction Hamiltonians for a free-standing cylindrical quantum dot.
Considering both the electrostatic and mechanical boundary conditions, Klimin et al [22]
and Fomin and Pokatilov [23] studied the phonon modes and deduced the Hamiltonian of
electron–phonon interaction in multilayer polar structures.

It should be noted that the image potential induced by the charged particles may influence
the properties of electrons in the quantum wire, especially when the quantum wire is narrow
[24, 25]. It is found that, for a quantum wire with dielectric discontinuity, the hole–acceptor
attraction potential has a non-Coulombic form [22, 26]. However, Wendler and Hartwig [27]
studied the effect of the image potential on the binding energy of hydrogenic impurities in
semiconductor quantum wells. They found that, when all image contributions (the mutual
image potential between the hydrogenic impurity and the electron and the self-image potentials
of the two particles) are taken into consideration, the image potential effects on the hydrogenic
donor binding energy will be weak for donor positions in the centre of the quantum well.
Therefore, for simplicity, in the present work, the influence of the image potential will not be
considered.

In this paper, we will consider a QWW formed by a cylindrical polar semiconductor 1
(the well material, ρ < R1) embedded in another polar semiconductor 2 (the barrier material,
R1 � ρ < R2, with R2 � R1). Bennett et al [28] have worked out the confined and
interface optical phonon modes in this QWW system. In fact, there exist two types of
confined longitudinal optical phonon (LO) mode in this system, namely, one type of LO
mode inside the wire (LO1) and another in the barrier material (LO2). Research on quantum
well structures shows that the influence of the LO2 modes becomes obvious as the dimension
of the well reduces [29, 30]. In this paper, we will work out all the phonon modes and the
corresponding Fröhlich electron–phonon interaction Hamiltonian. We will use the dielectric
continuum model because of its simplicity and efficiency for the GaAs/AlAs and GaAs/AlGaAs
systems [19, 28].

In the following, firstly, in section 2, we will study the impurity binding energy of the
QWW structure, using a two-parameter trial wave function. Then in section 3, we will derive
the various phonon modes and electron–phonon interaction Hamiltonians in the QWW system.
Afterwards, in section 4, the impurity binding energy, together with the influence of phonons,
i.e., the bound-polaron binding energy will be studied. Numerical calculation and detailed
discussion on bound-polaron properties are given in section 5. Finally, in section 6, we present
a brief summary.
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2. The impurity ground state

Consider a cylindrical quantum well wire consisting of GaAs (ρ < R1) embedded in
Ga1−xAlxAs (R1 � ρ < R2). The impurity is located at ρi = 0 (taking the wire axis as
the origin). Under the effective-mass approximation, the Hamiltonian of the system can be
written as (neglecting the image effect)

He = − h̄2

2m∗ ∇2 − e2

εr
+ V (ρ) (1)

with

V (ρ) =
{
U ρ � R1

0 ρ < R1.

Let us first consider the electron wave function in a cylindrical quantum well wire with no
impurity present, i.e. find the solution to the following Schrödinger equation:

h̄2

2m∗

[
− 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− ∂2

∂z2

]
ψ(ρ, z) + V (ρ)ψ(ρ, z) = E0ψ(ρ, z). (2)

The solution gives

ψ(ρ, z) =


NJ0(αρ) exp[iqz] ρ < R1

N
J0(αR1)

K0(βR1)
K0(βρ) exp[iqz] ρ � R1

(3)

where

α =
√

2m∗E0/h̄
2

β =
√

2m∗(U − E0)/h̄
2

and J0(x) and K0(x) are the zero-order Bessel function and modified Bessel function of the
second kind, respectively. The energy level E0 is obtained by solving the following equation:

αJ1(αR1)K0(βR1) = βK1(βR1)J0(αR1). (4)

On the basis of the above result, considering the anisotropy of the quantum wire system,
we propose a trial wave function with two variational parameters for equation (1):

�(ρ, z) = N exp
[
−

√
λ2ρ2 + µ2z2

]
×



J0(αρ) ρ < R1

J0(αR1)

K0(βR1)
K0(βρ) ρ � R1

(5)

where λ and µ are variational parameters characterizing the anisotropy in the ρ- and z-
directions. N is the normalization constant defined by

4πλ

µ
N2

{∫ R1

0
J 2

0 (αρ)K1(2λρ)ρ
2 dρ +

J 2
0 (αR1)

K2
0 (βR1)

∫ ∞

R1

K2
0 (βρ)K1(2λρ)ρ

2 dρ

}
= 1 (6)

where K1(x) is the second-kind modified Bessel function of first order.
The expectation value of He is given by

〈�(ρ, z)|He|�(ρ, z)〉 = T + U (7)
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with

T = − h̄2λ2

2m∗ +
πλα2h̄2N2

m∗µ

∫ R1

0
J 2

0 (αρ)K1(2λρ)ρ
2 dρ

− πλβ2h̄2N2

m∗µ
J 2

0 (αR1)

K2
0 (βR1)

∫ ∞

R1

K2
0 (βρ)K1(2λρ)ρ

2 dρ

− 4παh̄2λ2N2

m∗µ

∫ R1

0
J0(αρ)J1(αρ)K0(2λρ)ρ dρ

− 4πβh̄2λ2N2

m∗µ
J 2

0 (αR1)

K2
0 (βR1)

∫ ∞

R1

K0(βρ)K1(βρ)K0(2λρ)ρ dρ

+
2πh̄2λN2

m∗µ

∫ R1

0
J0(αρ)

[
αJ1(αρ) − 1

2
α2ρJ2(αρ)

]
K1(2λρ)ρ dρ

+
2πh̄2λN2

m∗µ
J 2

0 (αR1)

K2
0 (βR1)

∫ ∞

R1

K0(αρ)

[
βK1(αρ) − 1

2
β2ρK2(αρ)

]
× K1(2λρ)ρ dρ

+
4πh̄2λ2N2

m∗µ

[∫ R1

0
J 2

0 (αρ)K0(2λρ)ρ dρ

+
J 2

0 (αR1)

K2
0 (βR1)

∫ ∞

R1

K2
0 (βρ)K0(2λρ)ρ dρ

]

+
2πh̄2(µ2 − λ2)

m∗ N2
∫ R1

0

∫ ∞

0
J 2

0 (αρ)µ
2z2

exp
[
−2

√
λ2ρ2 + µ2z2

]
λ2ρ2 + µ2z2

ρ dρ dz

+
2πh̄2(µ2 − λ2)

m∗ N2 J
2
0 (αR1)

K2
0 (βR1)

×
∫ ∞

R1

∫ ∞

0
K2

0 (αρ)µ
2z2

exp
[
−2

√
λ2ρ2 + µ2z2

]
λ2ρ2 + µ2z2

ρ dρ dz (8)

and

U = −4πN2e2

ε

∫ [
J0

(
χ1

0ρ

R

)]2 exp
[
−2

√
λ2ρ2 + µ2z2

]
√
ρ2 + z2

ρ dρ dz. (9)

The ground-state energy of the impurity is obtained by minimizing the expectation value
of the Hamiltonian He according to the variational parameters λ and µ:

E = min
µ,λ

〈�(ρ, z)|He|�(ρ, z)〉. (10)

The impurity binding energy is given by

Eb = E0 − E (11)

where E0 is the solution of equation (4).

3. The phonon modes and electron–phonon interaction Hamiltonians

In this section, we will use the dielectric continuum model to derive the various phonon modes
and Fröhlich electron–phonon interaction Hamiltonians for the quantum well wire system. In
the structure, material 1 lies within ρ < R1 and material 2 fills up the space R1 � ρ < R2.
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R2 � R1. In the following analysis, the periodic boundary condition along the z-direction is
introduced: − 1

2L � z � 1
2L. Optical phonon modes in the structures are determined using

classical electrostatics. We start with the electrostatic equations

∇ · D = 4πρ0(r) (12)

D = εE = E + 4πP (13)

E = −∇φ(r) (14)

where ρ0(r) is the charge density. For free oscillation (i.e. ρ0 = 0), we have

ε ∇2φ(r) = 0. (15)

3.1. The confined LO modes

There are two solutions for equation (15). The first is ε = 0 inside the wire. Since

ε(ω) = ε∞ +
ε0 − ε∞

1 − ω2/ω2
TO

(16)

we have that ε(ω) = 0 gives

ω2 = ω2
TO

ε0

ε∞
= ω2

LO (17)

in which we have made use of the Lyddane–Sachs–Teller (LST) relation; i.e. for the solution
of ε(ω) = 0, we obtained a bulk LO phonon vibration mode.

3.1.1. Confined LO phonon modes inside the well (LO1). The potential for the confined LO
mode inside the wire (ρ � R1) can be chosen as

φml(r) =
{
CmlJm(χ

l
mρ/R1) exp[imϕ] exp[iqzz] ρ � R1

0 ρ > R1
(18)

where Jm(x) is the Bessel function of the mth order, χl
m is the lth zero of Jm(x).

The phonon mode described here is fundamentally identical to the one that we derived for
the quantum wire in our recent paper [10]. So it is unnecessary to repeat the trivial algebraic
calculation and we simply give the result here.

The phonon Hamiltonian of the LO1 mode is

HLO1 =
∑
mlqz

h̄ωLO1

[
â

†
ml(qz)âml(qz) +

1

2

]
(19)

where â†
ml(qz) and âml(qz) are the creation and annihilation operators for the LO1 phonon of

the mlqz-mode. They satisfy[
âml(qz), â

†
m′l′(qz

′)
]

= δmm′δll′δqzqz ′ (20)[
âml(qz), âm′l′(qz

′)
] =

[
â

†
ml(qz), â

†
m′l′(qz

′)
]

= 0 (21)

and the Hamiltonian describing the interaction between the LO1 phonon and the electron is

He−LO1 = −
∑
mlqz

[
-LO1
ml (qz)Jm

(
χl
mρ

R1

)
eimϕe−iqzzâ

†
ml(qz) + h.c.

]
(22)

where

|-LO1
ml |2 = 4e2h̄ωLO1

LJ 2
m+1(χ

l
m)(χ

l
m

2 + R2
1q

2
z )

(
1

ε∞1
− 1

ε01

)
. (23)
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3.1.2. The LO mode in the barrier material (LO2). For the LO mode in the barrier material
(R1 � ρ � R2), the potential for the LO2 mode can be chosen as

φml(r) =
{
BmlTml(amlρ/R1)e

imϕeiqzz R1 � ρ � R2

0 otherwise
(24)

where

Tml(amlρ/R1) = Jm(amlρ/R1) + bmlYm(amlρ/R1). (25)

Ym(x) is the second-kind Bessel function of order m. Tml(ρ) satisfies the boundary conditions
at ρ = R1 and ρ = R2, i.e.

Tml(amlρ/R1)
∣∣
ρ=R1

= Tml(amlρ/R1)
∣∣
ρ=R2

= 0. (26)

That is, aml and bml are the solutions to the equations

Jm(a) + bYm(a) = 0

Jm(aR2/R1) + bYm(aR2/R1) = 0.
(27)

l = 0, 1, 2, . . . denotes the number of zeros of Tml(amlρ/R1)within the range ofR1 � ρ � R2.
We can prove that Tml(amlρ/R1) and Tmk(amkρ/R1) are orthogonalized within the range

of R1 � ρ � R2 (refer to appendix A).
The polarization vectors for the LO2 mode are

P LO2
ml = 1

4π
∇φml(r) = Bml

4π

{
1

2
[Tm−1,l(amlρ/R1) − Tm+1,l(amlρ/R1)]

aml

R1
eρ

+ Tml(amlρ/R1)
im

ρ
eϕ + Tml(amlρ/R1)iqz

}
eze

imϕeiqzz. (28)

Similarly to that for LO1 [10], The Hamiltonian of the free vibration is given by

Hph = 1

2

∫
[nµu̇ · u̇ + nµω2

0u · u − neu · Eloc] d3r. (29)

Here µ is the reduced mass of the ion pair and u = u+ −u− is the relative displacement of the
positive and negative ions, ω0 is the frequency associated with the short-range force between
ions, Eloc is the local field at the position of the ions, n is the number of ion pairs per unit
volume and α is the electronic polarizability per ion pair.

Since

Eloc = −8

3
πP (30)

we have

u = 1 + 8
3πnα

ne
P (31)

and then

HLO2 = 1

2

∫ [
nµ

(
1 + 8

3πnα

ne

)2

Ṗ ∗ · Ṗ + nµω2
LO2

(
1 + 8

3πnα

ne

)2

P ∗ · P

]
d3r (32)
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since∫
P LO2∗
ml (qz) · P LO2

m′l′ (q
′
z) dr

= LB2
ml

32π
{a2

ml[γ
2T 2

m−1,l(amlγ ) + γ 2T 2
m+1,l(amlγ ) − T 2

m−1,l(aml) − T 2
m+1,l(aml)]

− 2q2
z [R2

2Tm−1,l(amlγ )Tm+1,l(amlγ ) − R2
1Tm−1,l(aml)Tm+1,l(aml)]}

× δmm′δll′δqzq ′
z

(33)

where γ = R2/R1.
If we choose Bml to be

B2
ml = 32π

nµL

(
ne

1 + 8
3πnα

)2

{a2
ml[γ

2T 2
m−1,l(amlγ ) + γ 2T 2

m+1,l(amlγ )

− T 2
m−1,l(aml) − T 2

m+1,l(aml)] − 2q2
z [R2

2Tm−1,l(amlγ )Tm+1,l(amlγ )

− R2
1Tm−1,l(aml)Tm+1,l(aml)]}−1 (34)

then P LO2
ml may form an orthonormal and complete set, which can be used to express P as

P =
∑
mlqz

(
h̄

ωLO2

)1/2 [
b̂ml(qz) + b̂

†
ml(qz)

]
P LO2
ml (r) (35)

Ṗ = −i
∑
mlqz

(h̄ωLO2)
1/2

[
b̂ml(qz) − b̂

†
ml(qz)

]
P LO2
ml (r). (36)

P and Ṗ are now quantum field operators; b̂†
ml(qz) and b̂ml(qz) are the creation and annihilation

operators for the LO2 phonon of the mlqz-mode. They satisfy[
b̂ml(qz), b̂

†
m′l′(qz

′)
]

= δmm′δll′δqzqz ′ (37)[
b̂ml(qz), b̂m′l′(qz

′)
]

=
[
b̂

†
ml(qz), b̂

†
m′l′(qz

′)
]

= 0. (38)

Then the Hamiltonian operator for confined LO phonons will be

HLO2 =
∑
mlqz

h̄ωLO2

[
b̂

†
ml(qz)b̂ml(qz) +

1

2

]
. (39)

The Hamiltonian describing the interaction between the electron and the phonon field is

He−ph = −eφ(r). (40)

φ(r) can be expanded in terms of the normal modes, so

He−LO2 = −
∑
mlqz

[
-LO2
ml (qz)Tml(amlρ/R1)e

imϕe−iqzzb̂
†
ml(qz) + h.c.

]
(41)

where

-LO2
ml (qz) =

√
8e2h̄ωLO2

L

(
1

ε∞2
− 1

ε02

)1/2

{a2
ml[γ

2T 2
m−1,l(amlγ ) + γ 2T 2

m+1,l(amlγ )

− T 2
m−1,l(aml) − T 2

m+1,l(aml)] − 2q2
z [R2

2Tm−1,l(amlγ )Tm+1,l(amlγ )

− R2
1Tm−1,l(aml)Tm+1,l(aml)]}−1/2. (42)
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3.2. The interface phonon modes

The other solution for equation (15) is

∇2φ(r) = 0. (43)

This will give the interface modes; the solution for equation (43) is

φm(r) = Cmeimϕeiqzz

{
Km(qzR1)Im(qzρ) ρ � R1

Im(qzR1)Km(qzρ) ρ > R1
(44)

where Km(x) and Im(x) are the modified Bessel functions of the first and second kind,
respectively.

It should be noticed that

ε1(ω) = ε∞1
ω2 − ω2

LO1

ω2 − ω2
TO1

(45)

ε2(ω) = ε∞2
ω2 − ω2

LO2

ω2 − ω2
TO2

. (46)

The boundary condition at ρ = R1 is

ε1(ω)
∂φ1

∂ρ
= ε2(ω)

∂φ2

∂ρ
.

This gives the dispersion relation

ε∞1
ω2 − ω2

LO1

ω2 − ω2
TO1

Km(qzR1)
[
Im−1(qzR1) + Im+1(qzR1)

]

+ ε∞2
ω2 − ω2

LO2

ω2 − ω2
TO2

Im(qzR1)
[
Km−1(qzR1) + Km+1(qzR1)

] = 0 (47)

where

ω± =
(−B ± √

B2 − 4AC

2A

)1/2

(48)

with

A = ε∞1Km(qzR1)
[
Im−1(qzR1) + Im+1(qzR1)

]
+ ε∞2Im(qzR1)

[
Km−1(qzR1) + Km+1(qzR1)

]

B =




qzR1

2m
{[(ε01 + ε∞2)ω

2
TO1 + (ε02 + ε∞1)ω

2
TO2]

× [Km−1(qzR1)Im−1(qzR1) − Km+1(qzR1)Im+1(qzR1)]
+ [(ε01 − ε∞2)ω

2
TO1 − (ε02 − ε∞1)ω

2
TO2]

× [Km−1(qzR1)Im+1(qzR1) − Km+1(qzR1)Im−1(qzR1)]} if m �= 0

{−2K0(qzR1)I1(qzR1)(ε01ω
2
TO1 + ε∞1ω

2
TO2)

− 2I0(qzR1)K1(qzR1)(ε02ω
2
TO2 + ε∞2ω

2
TO1)} if m = 0

C = ω2
TO1ω

2
TO2{ε01Km(qzR1)[Im−1(qzR1) + Im+1(qzR1)]

+ ε02Im(qzR1)[Km−1(qzR1) + Km+1(qzR1)]}.
When ω is worked out, ε1(ω) and ε2(ω) can be obtained via equations (45) and (46)

respectively.
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The polarization fields for the IO phonon modes are

P IO
m = Cm




1 − ε1

4π
∇ [

Km(qzR1)Im(qzρ)e
imϕeiqzz

]
ρ � R1

1 − ε2

4π
∇ [

Im(qzR1)Km(qzρ)e
imϕeiqzz

]
ρ > R1

= Cmeimϕeiqzz




1 − ε1

4π
Km(qzR1)

×
{

1

2
qz[Im−1(qzρ) + Im+1(qzρ)]eρ

+
im

ρ
Im(qzρ)eϕ + iqzIm(qzρ)ez

}
ρ � R1

1 − ε2

4π
Im(qzR1)

×
{

1

2
qz[Km−1(qzρ) + Km+1(qzρ)]eρ

+
im

ρ
Km(qzρ)eϕ + iqzKm(qzρ)ez

}
ρ > R1.

(49)

Similarly to in our previous paper [10], we obtain the Hamiltonian for the IO phonon:

HIO = 1

2

∫
d3r

[
nµ

(
1

ne[1 + (αµ/e2)(ω2
0 − ω2)]

)2

Ṗ ∗ · Ṗ

+ nµω2

(
1

ne[1 + (αµ/e2)(ω2
0 − ω2)]

)2

P ∗ · P

]
(50)

since∫
P IO∗
m′ (q ′

z) · P IO
m (qz) d3r = L

16π
C2
m{(1 − ε1)

2K2
m(qzR1)Im(qzR1)qzR1

× [Im−1(qzR1) − Im+1(qzR1)] + 2(1 − ε2)
2I 2

m(qzR1)Km(qzR1)

× [Km+1(qzR1)qzR1 − mKm(qzR1)]}δmm′δqzq ′
z
. (51)

If we choose Cm as

C−2
m = L

4ω2

{(
1

ε1 − ε01
− 1

ε1 − ε∞1

)−1

× K2
m(qzR1)Im(qzR1)qzR1[Im−1(qzR1) − Im+1(qzR1)]

+ 2I 2
m(qzR1)Km(qzR1)[Km+1(qzR1)qzR1 − mKm(qzR1)]

×
(

1

ε2 − ε02
− 1

ε2 − ε∞2

)−1}
(52)

then the P IO
m may form an orthonormal and complete set. We may express P as

P =
∑
mqz

(
h̄

ω

)1/2

[ĉm(qz) + ĉ†
m(qz)]P

IO2
m (53)

Ṗ = −i
∑
mqz

(h̄ω)1/2[ĉm(qz) − ĉ†
m(qz)]P

IO2
m (54)

where ĉ†
m(qz) and ĉm(qz) are the creation and annihilation operators for an IO phonon with

frequency ω. They satisfy[
ĉm(qz), ĉ

†
m′(qz

′)
]

= δmm′δqzqz ′ (55)
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[
ĉm(qz), ĉm′(qz

′)
] =

[
ĉ†
m(qz), ĉ

†
m′(qz

′)
]

= 0. (56)

The Hamiltonian operator for the IO phonons is

HIO =
∑
mqz

h̄ω

[
ĉ†
m(qz)ĉm(qz) +

1

2

]
(57)

and the Hamiltonian describing the interaction between the electron and the IO phonon is

He−IO = −
∑
mqz

[
-IO
m (qz)e

imϕe−iqzzĉ†
m(qz) + h.c.

] ×
{
Km(qzR1)Im(qzρ) ρ � R1

Im(qzR1)Km(qzρ) ρ > R1
(58)

where

|-IO
m (qz)|2 = C2

m

e2h̄

ω

= 4e2h̄ω

L

{(
1

ε1 − ε01
− 1

ε1 − ε∞1

)−1

× K2
m(qzR1)Im(qzR1)qzR1[Im−1(qzR1) − Im+1(qzR1)]

+ 2I 2
m(qzR1)Km(qzR1)[Km+1(qzR1)qzR1 − mKm(qzR1)]

×
(

1

ε2 − ε02
− 1

ε2 − ε∞2

)−1}−1

. (59)

4. The bound-polaron binding energy

Now we consider the polaron effect on the impurity state (which is known as the bound-polaron
state). The Hamiltonian of the system can be written as

H = He + Hph + He−ph (60)

where He, which is the impurity Hamiltonian, is given in equation (1). The second term is the
phonon Hamiltonian:

Hph = HLO1 + HLO2 + HIO

=
∑
mlqz

h̄ωLO1

[
a

†
ml(qz)aml(qz) +

1

2

]
+

∑
mlqz

h̄ωLO2

[
b

†
ml(qz)bml(qz) +

1

2

]

+
∑
mqz

h̄ω

[
c†
m(qz)cm(qz) +

1

2

]
(61)

and the third term is the electron–phonon interaction Hamiltonian given by

He−ph = He−LO1 + He−LO2 + He−IO (62)

in which He−LO1, He−LO2 and He−IO are given by equations (22), (41) and (58) respectively.
We will use the variational method in our calculation. The trial wave function is chosen to be

|9〉 = �(ρ, z)S|0〉. (63)

�(ρ, z) is given in equation (5), |0〉 is the phonon vacuum state, while S is the second LLP
transform defined by

S = exp

[∑
mlqz

(f LO1
ml (qz)a

†
ml(qz) − f LO1∗

ml (qz)aml(qz))

+
∑
mlqz

(f LO2
ml (qz)b

†
ml(qz) − f LO2∗

ml (qz)bml(qz))

+
∑
mqz

(f IO
m (qz)c

†
m(qz) − f IO∗

m (qz)cm(qz))

]
. (64)
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The first LLP transform is not applied here for the following reasons: (i) because of the
existence of the Coulomb impurity, the total momentum of the system is no longer conserved;
(ii) the strong confinement of the electron and phonons makes the coupling between them
stronger [10]. The unitary operator S transforms the phonon operator as follows and hence H
will be diagonalized:

S†a
†
ml(qz)S = a

†
ml(qz) + f LO1∗

ml (qz)

S†aml(qz)S = aml(qz) + f LO1
ml (qz)

S†b
†
ml(qz)S = b

†
ml(qz) + f LO2∗

ml (qz)

S†bml(qz)S = bml(qz) + f LO2
ml (qz)

S†c†
m(qz)S = c†

m(qz) + f IO∗
m (qz)

S†cm(qz)S = cm(qz) + f IO
m (qz).

The expectation value of H is

〈9|H |9〉 = T + U +
∑
mlqz

|f LO1
ml (qz)|2 +

∑
mlqz

|f LO2
ml (qz)|2 +

∑
mqz

|f IO
m (qz)|2

+
∑
mlqz

[-LO1
ml (qz)〈�(ρ, z)|Jm(χl

mρ/R1)e
imϕe−iqzz|�(ρ, z)〉 + h.c.]

+
∑
mlqz

[-LO2
ml (qz)〈�(ρ, z)|Tml(amlρ/R1)e

imϕe−iqzz|�(ρ, z)〉 + h.c.]

+
∑
mqz

[-IO
m (qz)〈�(ρ, z)|g(qz, ρ)eimϕe−iqzz|�(ρ, z)〉 + h.c.] (65)

where

g(qz, ρ) =
{
Km(qzR)Im(qzρ) ρ � R1

Im(qzR)Km(qzρ) ρ > R1
(66)

Minimizing 〈9|H |9〉 with respect to f LO1∗
ml (qz), f LO2∗

ml (qz) and f IO∗
m (qz) successively, one

obtains

f LO1
ml (qz) = −-LO1

ml (qz)〈�(r)|Jm(χl
mρ/R1)e

imϕe−iqzz|�(r)〉 (67)

f LO2
ml (qz) = −-LO2

ml (qz)〈�(r)|Tml(amlρ/R1)e
imϕe−iqzz|�(r)〉 (68)

f IO
m (qz) = −-IO

m (qz)〈�(r)|g(qz, ρ)eimϕe−iqzz|�(r)〉. (69)

Inserting equations (67), (68) and (69) into equation (65), we get

〈9|H |9〉 = T + U − =ELO1 − =ELO2 − =EIO (70)

with

=ELO1 =
∑
mlqz

1

h̄ωLO1
|-LO1

ml (qz)|2
∣∣〈�(r)|Jm(χl

mρ/R1)e
imϕe−iqzz|�(r)〉∣∣2

(71)

=ELO2 =
∑
mlqz

1

h̄ωLO2
|-LO2

ml (qz)|2
∣∣〈�(r)|Tml(amlρ/R1)e

imϕe−iqzz|�(r)〉∣∣2
(72)

and

=EIO =
∑
mqz

1

h̄ω
|-IO

m (qz)|2
∣∣〈�(r)|g(qz, ρ)eimϕe−iqzz|�(r)〉∣∣2

. (73)
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T and U are defined in equations (8) and (9) respectively. The ground-state energy of the
system is calculated using equation (70):

E = min
λ,µ

〈9|H |9〉. (74)

The impurity binding energy with the phonon contribution is calculated using equation
(11) with E obtained above.

5. Results and discussion

Numerical calculations were carried out on the GaAs–Ga1−xAlxAs quantum well quantum
wire. The material parameters are listed in table 1.

Table 1. The material parameters.

Material parameters [11, 31]

GaAs (ν = 1) Ga1−xAlxAs (ν = 2) AlAs

mν (units of m0) 0.067 0.067 + 0.083x 0.15
h̄ωLOν (meV) 36.25 36.25 + 3.83x + 17.12x2 − 5.11x3 50.09
h̄ωTOν (meV) 33.29 33.29 + 10.70x + 0.03x2 + 0.86x3 44.88
ε0ν 13.18 13.18 − 3.12x 10.06
ε∞ν 10.89 10.89 − 2.73x 8.16

The confining potential for the electron is U = 600 × (1.155x + 0.37x2) meV. We chose
the effective atomic unit so that the unit of length is the effective Bohr radius a∗

0 = εh̄2/m∗e2

and the unit of energy is the effective Rydberg R∗ = m∗e4/2h̄2ε2, which are about 100 Å
and 5.25 meV respectively for GaAs. We have calculated the bound-polaron binding energy
for different Al concentrations: x = 0.1 and 0.3 and different wire radii R1. The radius of
material 2 (Ga1−xAlxAs) R2 is chosen to be far larger than R1 (in this work, R2 = 20a∗

0 ).
In figure 1, we have plotted the binding energy Eb of the donor impurity state with electron–
phonon coupling (bound polaron) versus the wire radius R1 (solid lines). For comparison, we
have also plotted the bound-polaron binding energy for infinite-well confinement (free-standing
quantum wire) [10]. WhenR1 increases, the bound-polaron binding energy reduces and reaches
the three-dimensional limit regardless of the height of the confining potential. However, when
R1 is small, the bound-polaron binding energies in a finite-confinement quantum well wire
behave differently to that for the infinite well. In the case of infinite confinement, the bound-
polaron binding energy increases monotonically as R1 reduces. But for finite confinement, as
R1 reduces, the bound-polaron binding energy first increases, then reaches a peak at a certain
wire radius Rm and reduces thereafter. The higher the confining potential, the higher the
value of the peak and the smaller the peak position value Rm. Because in the well with lower
confining potential, the confinement effect is weaker, the electron wave function ‘escapes’
out of the wire and spreads into a wider space, causing a lower binding energy. For the
same reason, the lines become even when the confining potential decreases. The dashed lines
in figure 1 show the donor impurity binding energies (without a phonon contribution) under
different confining potentials as functions of the wire radius. It is clear that the electron–phonon
interaction has a great influence on the electron properties in the quantum well wire systems.
To investigate the phonon influence in detail, in figure 2 we have plotted the contributions of
different phonon modes (LO1, LO2, IO) to the bound-polaron binding energy. In the figure
we can see that most of the phonon contribution to the bound-polaron binding energy comes
from the electron–IO phonon interaction. =EIO is very small when the radius of the wire
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Figure 1. Binding energies of the donor impurity as functions of the wire radius. Dashed curves:
the bare electron without the phonon contribution; solid curves: with the phonon contribution.

R1 is large, then increases quickly as R1 reduces. It reaches a peak and then decays quickly
as the wire becomes narrower, because for the case of small R1, the electron wave function
spreads into the barrier area and hence reduces the effect of the electron–IO phonon interaction.
Compared to that of the IO phonon modes, the contributions of the LO phonon modes are far
less important. The contribution of the LO modes inside the wire (=ELO1), which depends on
the electron wave function inside the wire, increases as R1 increases and becomes dominant
at the three-dimensional limit. One could observe that the curve for =ELO1 is a little concave
whenR1 is larger than 1. This could be explained by the coupling between the LO1 eigenmodes
and the electron (the mathematical analysis is a little bit lengthy, so we put it in appendix B).
In contrast, =ELO2, which is related to the electron wave function in the barrier area, hardly
makes any contribution to the bound-polaron binding energy until the well is quite narrow.
However, it obviously increases as R1 reduces. This shows that when studying the properties
of the quantum well wire system, it is unnecessary to take the LO phonon modes in the barrier
area into consideration when the well is not very narrow.

6. Summary

In conclusion, we have investigated the impurity binding energy in a cylindrical quantum well
wire with a finite confining potential. In order to study the influence of electron–phonon
interaction in the system, we worked out the expressions for various phonon modes and the
electron–phonon interaction Hamiltonians in this quantum well wire system. We found out
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Figure 2. Contributions of different phonon modes to the bound-polaron binding energy. Different
confining potential heights (Al concentration x) are used: solid curves: x = 0.3; dashed curves:
x = 0.1.

that there exist two types of confined longitudinal phonon mode. One is in the well material
(LO1), another in the barrier materials (LO2). We have also derived the dispersion relation for
the interface optical phonon modes. We studied the contribution of electron–phonon coupling
to the impurity binding energy in this quantum well wire system. It is found that the electron–
phonon interaction contributes greatly to the impurity binding energy. For example, the total
phonon contribution to the impurity binding energy (Eb) for a GaAs/Ga0.7Al0.3As quantum
well wire could be as much as 33% of Eb at R1 = 0.25 (figure 1). Detailed analysis shows
that the interface phonon modes play a major role in the phonon contributions, especially
when the radius of the wire is relatively small. The contributions of the LO phonon modes
are less important, especially that of the mode in the barrier material (LO2). In fact, the LO2
modes do not show an influence on the binding energy until the wire is quite narrow, while the
influence of the LO1 modes increase as the radius of the wire increases. When the radius of the
wire becomes very large, =ELO1 reaches a certain limit value, which is the three-dimensional
limit [10].
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Appendix A. The orthogonality of Tml

We now prove that Tml(amlρ/R1) and Tmk(amkρ/R1) are orthogonalized within the range of
R1 � ρ � R2.

As Tml(amlρ/R1) is defined by equation (25), it satisfies the following Bessel equation:

ρ2 d2Tml(amlρ/R1)

dρ2
+ ρ

dTml(amlρ/R1)

dρ
+

(
a2
ml

R2
1

ρ2 − m2

)
Tml(amlρ/R1) = 0 (A1)

and Tmk(amkρ/R1) satisfies

ρ2 d2Tmk(amkρ/R1)

dρ2
+ ρ

dTmk(amkρ/R1)

dρ
+

(
a2
mk

R2
1

ρ2 − m2

)
Tmk(amkρ/R1) = 0. (A2)

Multiplying equation (A1) by Tmk(amkρ/R1)/ρ, and equation (A2) by Tml(amlρ/R1)/ρ,
we get

ρTmk(amkρ/R1)
d2Tml(amlρ/R1)

dρ2
+ Tmk(amkρ/R1)

dTml(amlρ/R1)

dρ

+

(
a2
ml

R2
1

ρ − m2

ρ

)
Tmk(amkρ/R1)Tml(amlρ/R1) = 0 (A3)

ρTml(amlρ/R1)
d2Tmk(amkρ/R1)

dρ2
+ Tml(amlρ/R1)

dTmk(amkρ/R1)

dρ

+

(
a2
mk

R2
1

ρ − m2

ρ

)
Tml(amlρ/R1)Tmk(amkρ/R1) = 0 (A4)

and subtracting (A3) from (A4) and integrating both sides of the equation from R1 to R2 yields∫ R2

R1

[(
a2
ml

R2
1

− a2
mk

R2
1

)
ρ

]
Tml(amlρ/R1)Tmk(amkρ/R1) dρ

=
[
ρ

(
Tml(amlρ/R1)

dTmk(amkρ/R1)

dρ
− Tmk(amkρ/R1)

dTml(amlρ/R1)

dρ

)]R2

R1

.

(A5)

That is(
a2
ml

R2
1

− a2
mk

R2
1

) ∫ R2

R1

Tml(amlρ/R1)Tmk(amkρ/R1)ρ dρ

=
[
ρ

(
aml

R1
Tm+1,l(amlρ/R1)Tmk(amkρ/R1)

− amk

R1
Tml(amlρ/R1)Tm+1,k(amkρ/R1)

)]R2

R1

=
[
ρ

(
aml

R1
Tml(amlρ/R1)Tm−1,k(amkρ/R1)

− amk

R1
Tm−1,l(amlρ/R1)Tmk(amkρ/R1)

)]R2

R1

≡ 0. (A6)

We have made use of the recurrence relation

T ′
m(x) = m

x
Tm(x) − Tm+1(x)

and the boundary conditions at ρ = R1 and ρ = R2 (equation (26)).
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So ∫ R2

R1

Tml(amlρ/R1)Tmk(amkρ/R1)ρ dρ

{
= 0 if l �= k

�= 0 if l = k

and ∫ R2

R1

Tm−1,l(amlρ/R1)Tm−1,k(amkρ/R1)ρ dρ

{
= 0 if l �= k

�= 0 if l = k.

Appendix B. The LO1 eigenmodes and the electron wave function

From equation (71) we learn that only the m = 0 modes will couple with the electron wave
function.. The LO1 phonon modes are characterized by l, which is the number of zeros within
0 < ρ < R1. In figure A1 we have plotted the functions of the first four eigenmodes. We
notice that the amplitude of the eigenmode function decays quickly, and it becomes more and
more oscillating as l increases. =ELO1 in equation (71) depends on the coupling between the
electron wave function and the phonon eigenmodes. In figure A2 we have plotted the radial
electron probability distribution function w(ρ) for some R1-values. w(ρ) is defined by

w(ρ) dρ = 2π

[∫ ∞

−∞
|�(ρ, z)|2 dz

]
ρ dρ.

As R1 increases, the maximum position (ρM ) of w(ρ) will get closer to the centre of the
quantum wire. When R1 is very small, the distribution gives ρM > R1; that is, the major part
of the electron wave function lies outside the quantum wire, which is beyond the influence of
the LO1 phonon modes. However, considering that we are using relative units in figure A2,
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Figure A1. The LO1 eigenmodes.
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Figure A2. The radial distribution of the electron wave function.

the actual position of ρM changes little withR1. This means that, asR1 increases, the influence
of the LO1 phonon modes becomes significant as the electron ‘falls’ into the quantum wire
(figure 2). The total contribution of the LO1 phonon modes in equation (71) is a summation
over all LO1 eigenmodes. Considering the oscillating nature of the higher-l modes, when R1

is small, only the contribution of the very low modes affects =ELO1. And the contribution of
each single mode increases steadily as R1 increases until R1 = 1. After that, all of the electron
wave function distributes within the quantum wire and ρM gets closer and closer to the centre
of the quantum wire as R1 increases. One can also see that when R1 increases, the value of
w(ρ) reduces. Considering the properties of the eigenmode function in figure A1, it is easy
to understand that the contribution of each single mode starts to decrease as R1 increases. At
the same time, because ρM gets closer to the centre of the wire and w(ρ) decreases and finally
vanishes as ρ increases, more and more eigenmodes start to make significant contributions to
=ELO1. The competition between these two factors results in a little concavity in the curve
for =ELO1.
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